Категории

Интерпретируемое машинное обучение на Python

  • Автор: Масис Серг

  • Переплет: мягкий
  • Страниц: 384
  • Формат: 21.5x16.5x1.8 см
  • Вес: 831 г
  • ISBN: 978-5-9775-1735-5
  • Бумага: офсетная
  • Иллюстрации: ч/б иллюстрации
  • Год издания: 2023
  • Язык издания: русский

44250575

Наличие: Этого товара нет в наличии

1 168 Kč

Книга поможет осознанно и эффективно работать с моделями машинного обучения. Дано введение в интерпретацию машинного обучения: раскрыты важность темы, ее ключевые понятия и проблемы. Рассмотрены методы интерпретации: модельно-агностические, якорные и контрфактические, для многопеременного прогнозирования, а также визуализации сверточных нейронных сетей. Раскрыты вопросы настройки на интерпретируемость: отбор и конструирование признаков, ослабление систематического смещения и причинно-следственный вывод, монотонные ограничения, настройка моделей и устойчивость к антагонизму. Показаны перспективы развития интерпретируемых моделей машинного обучения. Каждая глава книги включает подробные примеры исходного кода на языке Python.
Первый раздел книги представляет собой руководство для начинающих по интерпретации результатов моделирования. В нем даны основные понятия и проблемы, показано значение машинного обучения в бизнесе. Рассмотрены модели белого ящика, черного ящика и стеклянного ящика, проведено их сравнение и предложены разумные компромиссы.

Во втором разделе описан широкий спектр методов интерпретации, известных также как методы объяснимого искусственного интеллекта, и их применение в случаях классификации, регрессии, табличных временных рядов, обработки изображений или текста. Результаты моделирования сопровождаются программными кодами и понятными примерами.

В третьем разделе рассмотрена настройка моделей и работа с обучающими данными. При этом интерпретируемость обеспечивается за счет снижения сложности, ослабления систематического смещения и повышения надежности. Рассмотрены новейшие методы выбора признаков, монотонных ограничений, состязательного переобучения и др.

К концу этой книги вы сможете лучше понимать модели машинного обучения и улучшать их за счет настройки интерпретируемости.